ИИ и хайп
Еще раз надо вернуться к теме применения ИИ. Дело в том, что в ИИ существуют два подхода к проблеме создания приложений ИИ. Первое — широко раскручено, имеется хайп, что называется. Это то, что называется машинное обучение ML/DL еще нейросемантика туда же. Неспециалистам кажется, что это и есть весь ИИ. Также думают и многие инвесторы, которые больше склонны вкладываться в проекты, которые применяют известную технологию.
Второй подход — моделирование в машине мышления человека на основе формализации знаний и логического вывода. Этот подход позволяет получать точное решение прикладных задач, поскольку используются все конкретные знания, применяемые человеком для решения соответствующего класса задач. Этот подход раньше назывался «Экспертные системы», сейчас чаще употребляют термин “rule-based”, т. е. решение задач на на основе использования правил. Правила — это способ представления знаний предметной области.
Надо понимать, что первый подход не является универсальным, поскольку основан на математической статистике и может давать только вероятностные ответы. Например, при применении этого подхода к решению школьных текстовых задач была получена точность 60%.
В основном он применим там, где не требуется точный ответ — при игре в ГО (но не для шахмат!), для обработки изображений, для обработки больших данных (Big Data), или ответов на конкурсе эрудитов.
Второй способ — построение ИИ на основе знаний, более трудоемкий, но может обеспечить полное и точное решение задачи и, при этом, еще и дать объяснение и обоснование полученного решения. Еще одно преимущество — не требуется использовать громадные массивы данных и вычислительные мощности, как это происходит в машинном обучении.
Наш проект “TURING – thinking machine”, обеспечивает технологию построения интеллектуальных прикладных систем на основе баз знаний, описанных на языке EXXLOG.